Annual Drinking Water Quality Report For the Calendar Year of 2019 For Water Customers in the Village and Town Water Districts of: <u>Mt. Morris, Leicester, Cuylerville, and the American Rock Salt/Groveland Water System</u>

Public Water System Identification Numb	bers		lssued: 3/25/2020
Village of Mt. Morris 2501023	ARS/Groveland	2530018	Village of Leicester 2501020
Town of Mt. Morris 2500703	Town of Leicester	2501014	

Prepared by Chris M Young: Village of Mt. Morris Water Dept.

Introduction:

To comply with State regulations, the "parent" water system operated by the Village of Mt. Morris Water Department (which treats and distributes water to the purchasing systems listed above) annually issues a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares with State standards.

If you have any questions about this report or concerning your drinking water, please feel free to contact Chris Young, Superintendent of Public Works/ Operator in Responsible Charge for the Village of Mt. Morris at (585) 658-2331. Mr. Young can also supply contact numbers for the purchasing systems. You may also contact the Livingston County Department of Health at (585) 243-7280. We encourage our valued customers to become informed and to feel secure concerning the state of their drinking water. If you want to learn more, please attend any of our regularly scheduled village board meetings. Meetings are typically held once a month at 117 Main Street, on the third Monday of the month at 6:00 pm.

Where Does Our Water Come From?

In general, the sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. In order to ensure that your tap water is safe to drink, the State and the Environmental Protection Agency prescribe regulations that limit the number of certain contaminants in water provided by public water systems. The State Health Departments and the Federal Food and Drug Administration's regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Our water source is Silver Lake in Wyoming County. During 2019, our system did not experience any restriction of our water source. A pump station near the Silver Lake outlet intermittently delivers raw water to the 5 million- gallon reservoir at the Water Treatment Plant. Although late summer algae blooms create some taste and odor removal problems, the quality of raw water is very good. Turbidities of around 1.0 NTU and pH ranges of around 8.00 are optimal for our treatment processes. Copper sulfate is added at the Lake to discourage algae growth. Sodium hypochlorite is also added to the raw water at the Lake periodically to discourage zebra mussels. Water from the reservoir then enters the treatment plant. Our treatment processes include coagulation using a solution of aluminum chloride hydroxide sulfate (a coagulant), clarification, mixed media filtration (anthracite, sand, garnet), corrosion control using blended phosphates, and disinfection using sodium hypochlorite. Finished water turbidities ranged between .02-.23 NTU's (nephelometric turbidity units). 100% of our turbidity readings for the year 2019 were at or below the 0.3 NTU. Acceptable free available chlorine residuals (chlorine available to kill bacteria) are maintained in the clear well (storage tank) and throughout the entire distribution systems to ensure inactivation of giardia lamblia cysts and bacteria. The treatment process is completed as water exits the 1 million gallon clear well and enters the distribution system.

The NYS Department of Health has evaluated this Public Water System's susceptibility to contamination under the Source Water Assessment Program (SWAP), their findings are summarized in the paragraph below. It is important to stress that these assessments were created using available information and only estimate the *potential* for source water contamination. Elevated susceptibility ratings *do not* mean that source water contamination has or will occur for the public water system. The Village of Mt. Morris provides treatment and regular monitoring to ensure water delivered to customers meets all applicable standards. SWAP Executive Summary for Silver Lake:

This assessment found an elevated susceptibility to contamination for this source of drinking water. The amount of agricultural lands in the assessment area results in elevated potential for pesticide, DPB precursors, microbial and phosphorous contamination. In addition, the elevated density of CAFOs (Concentrated Animal Feeding Operations) in the assessment area very likely adds to the potential for contamination. No permitted discharges are found in the assessment area. There are no noteworthy contamination threats associated with other discrete contaminant sources. Additional sources of potential contamination include: An active railroad system and a golf course.

6 Facts and Figures

<i>The water systems serve:</i> (Approximate)		<i>Water Accountability:</i> (Approximate combined totals)	•				
Leicester Town/ Cuylerville:	562	Amount of water treated	177,064,900 gallons				
Leicester Village	438	Amount of water sold (metered)	147,390,305 gallons				
Mt. Morris Village	3500	Amount of water unaccounted for	29,674,595 gallons (16%)				
Mt. Morris Town	328						
Livingston County Water/							
Sewer Authority							
ARS/Groveland	382						
T. 1 111 . 1.1 . 1		 					

It should be noted that a substantial amount of unaccounted water includes filter backwashes, months of hydrant flushing this year, meter failures, fire protection use, , draining and cleaning of tanks , process instrument supply, and other various Village uses. The remainder is leakage or unauthorized use.

In 2019, water customers were charged:

Within the Village of Mt. Morris Limits:	Wholesale rate to the Village of Leicester:
0-3,000 gallons per quarter = $$42.50$ (base charge)	\$3.45 per thousand gallons
\$2.75 for each additional 1,000 gallons	Town of Mt. Morris Water District #1
Wholesale rate Town of Mt. Morris & ARS/Groveland syste	ems: $0-3,000$ gallons per quarter = \$47.50 (base charge)
\$4.25 per thousand gallons	\$4.75 for each additional 1,000 gallons
Wholesale rate Town of Mt. Morris & ARS/Groveland syste	ems: $0-3,000$ gallons per quarter = \$47.50 (base charge)

Are There Contaminants in Our Drinking Water?

As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include: total coliform, turbidity, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds, total trihalomethanes, halo acetic acids, synthetic organic compounds, asbestos, and radioactivity. The table presented below depicts which compounds were *detected* in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

It should be noted that all drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Water Hotline (1-800-426-4791 or the Livingston County Health Department (243-7280).

Detected Contaminant	Violation Yes/No	Date Of Sample	Level Detected (Avg/Max) (range)	Unit measure- ment	MCLG	Regulatory Limit (MCL,TT, MRDL or AL)	Typical source of Contaminant
Chlorine Residuals	Measured in 1	Distribution		1			
Chlorine Residual	no	Daily	Range (.47-1.5)	mg/l	N/A	MRDL=4.0	Water additive used to control microbes
Radioactive:							
Radium 226	no	12/6/16	ND	pCi/l	0pCi/l	MCL=5pCi/l	Erosion of natural deposits
Radium 228	no	12/6/16	0.70	pCi/l	0pCi/l	MCL=5pCi/l	Erosion of natural deposits
Inorganics:			•				
Detected Contaminant	Violation Yes/No	Date Of Sample	Level Detected (Avg/Max) (range)	Unit measure- ment	MCLG	Regulatory Limit (MCL,TT or AL)	Typical source of Contaminant
Asbestos	no	7/18/17	0.197	MFL	7mfl	MCL= 7mfl	Decay of asbestos cement water mains; erosion of natural deposits
Sodium* (See health effect language below)	no	6/11/19	24.0	mg/l	N/A	No designated limits	Naturally occurring; road salt; water softeners; animal waste
Chloride	no	6/11/19	43.0	mg/l	N/A	MCL= 250 mg/l	Naturally occurring or indicative of road salt contamination.
Barium	no	10/8/19	0.023	mg/l	2 mg/l	MCL= 2 mg/l	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chromium	no	10/8/19	1.9	ug/l	100 ug/l	MCL= 300 ug/l	Discharge from steel and pulp mills; erosion of natural deposits
Nickel	no	10/8/19	0.73	ug/l	N/A	N/A	N/A
Nitrate	no	6/11/19	0.87	mg/l	10/mg/l	MCL= 10mg/l	Runoff from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits

*Water containing more than 20 mg/l of sodium should not be used for drinking by people on very restricted sodium diets. Water containing more than 270 mg/l of sodium should not be used for drinking by people on moderately restricted sodium diets

Detected Contaminant	Violation Yes/No	Date of Samples	Level Det (Avg/M (range	(ax)	Unit measure- ment	MCLG	Regula Lim (MCL or A	nit 2,TT	Typical source of	f Contaminant
Trihalomethane (TTHM) Site 1 Village Building Site 2 Wastewater Treatment Plant	no	5/8/18 8/18/18 11/17/18 2/12/19 5/14/18 8/13/19 11/12/19	Site 1 *Highest 56.75 Range 40-68 Site 2 *Highest 66.5 Range: 5	Avg. 5 8 8 2: Avg.	ug/l	0 ug/l	MCI 80 u		By-product of d chlorination needed organisms. TTHMs water contains large a matte	d to kill harmful are formed when imounts of organi
Haloacetic acids- (HAA) Site 1 Village Building Site 2 Wastewater Treatment Plant *Compliance is bas	no ed on annual ru	5/8/18 8/18/18 11/17/18 2/12/19 5/14/18 8/13/19 11/12/19	Site 1 *Highest 39 Range: 2 Site 2 *Highest 42.75 Range: 2	: Avg. 23-52 2: Avg. 5 23-51	ug/l ted is the hig	0 ug/1	MCl 60 u	g/l	By-product of d disinfection needer organis	to kill harmful
Lead and Copper:										
Detected Contaminant	Violation Yes/No	Date of Sample	Level Detecte (Avg/Ma (range	ed ax) e)	Unit measure- ment	MCLG		egulato Limit MCL,T or AL)	T Typical source	of Contaminant
Lead	no	6/12-14 2017	*0.002 Range <0.001 0.0047	:: 0-	ug/l	0 ug/l	A	L= 15 u		usehold plumbing of natural deposit
Copper	no	6/12-14 2017	*0.29 Range 0.0099- 0	:	mg/l	1.3 mg/	1 .	AL= 1.3 mg/l	Corrosion of ho system; erosion	usehold plumbing of natural deposit
that indicates the copper values det	percent of a c ected at your	distribution water syste est value. T	that is equation that is equation that is equal to the second sec	al to or is case,	below it. The second se	ne 90 th perce were collec	ntile is e ted at yo ot excee	equal to our wate ded in	entile is a value on a o or greater than 90% er system(s) and the any of the samples c Regulatory Limit	of the lead and 90 th percentile ollected.
Contaminant	Yes/No	Sa	mple	Dete	ected n	neasurement	MC	LG	(MCL,TT, or AL)	of contaminatior
Microbiological Co *Turbidity	no no		/2/19	Max.	- 0.23	NTU	N/	Δ	<1.0 NTU (TT) ¹	Soil runoff
*Turbidity	no	2	2/19 2019 daily)	10 comp		NTU	N/		95%of monthly samples <0.3 NTU (TT) ¹	Soil runoff
*Distribution Turbidity ²	no	(d	2019 Jaily) 2018	Range 1.2 Hig monthl	21 hest	NTU	N/	A	MCL= 5 NTU ²	Soil runoff
system. Our high must not exceed 1 ¹ A treatment tech performance stand water exceeds 1.0	est single turb INTU and that inique violati dard values. NTU i turbidity sar	oidity measure at 95% of the on occurs if A treatmen	arement for the monthly f more than t technique	turbidit turbidit 5% of violation	ar occurred ty samples of the composi- on occurs if	on 6/13/19 (collected mu ite filter effl the turbidity	0.28 NT st measu uent me y level o	TU). Sta are less asurem f repres	ne effectiveness of or ate regulations require than or equal to 0.3 ents taken each mon sentative samples of lues in the distribution	re that turbidity NTU. th exceed the the filtered

not exceed 5 NTU							
Disinfection by Pro	duct Precursors/	Total Organic Ca	rbon (TOC)				
TOC : Source Water	no	monthly	avg: 4.81 range: 4.4-5.5	mg/l	N/A	N/A	Naturally present in the environment

TOC: entry point	no	monthly	Avg: 2.7	mg/l	N/A	43.7% removal	Naturally present in
			Range: 2.3-3.3			(TT)	the environment

Town of Leicester							
Detected Contaminant	Violation Yes/No	Date of Samples	Level Detected (Avg/Max) (range)	Unit measure- ment	MCL G	Regulatory Limit (MCL,TT or AL)	Typical source of Contaminant
Stage 2 Disinfection B	yproducts						
Total trihalomethanes- TTHM	no	5/8/18 8/14/18 11/13/18 2/12/19 5/14/19 *8/12/19 11/12/19	*Highest Avg. 78.50 Range: 58-99	ug/l	0 ug/l	MCL= 80 ug/l	By-product of drinking water chlorination needed to kill harmful organisms. TTHMs are formed when water contains large amounts of organic matter.
Haloacetic acids- HAA	no	5/8/18 8/14/18 11/13/18 *2/12/19 5/14/19 8/12/19 11/12/19	*Highest Avg. 38 Range: 13-63	ug/l	0 ug/l	MCL= 60 ug/l	By-product of drinking water chlorination disinfection needed to kill harmful organisms.
*Compliance is based	on annual runn	ing average.]	The level presented	is the highest	running a	nnual average of	the data collected.
Stage 2 Disinfection	1 Byproducts	s: American	Rock Salt (ARS	5), LCWSA			
Detected Contaminant	Violation Yes/No	Date of Samples	Level Detected (Avg/Max) (range)	Unit measure -ment	MCL G	Regulatory Limit (MCL,TT or AL)	Typical source of Contaminant
Total trihalomethanes- TTHM	no	5/9/18 8/17/18 11/14/18 2/20/19 5/15/19	*Highest Avg. 76.25 Range: 56-102	ug/l	0 ug/1	MCL= 80 ug/l	By-product of drinking water chlorination needed to kill harmful organisms. TTHMs are formed when water contains large amounts of organic matter.
		8/15/19 *11/15/19					

Total	no	5/8/18	*Highest Avg.	ug/l	0 ug/l	MCL =	By-product of drinking water
trihalomethanes-		8/14/18	73.0	8	0	80 ug/l	chlorination needed to kill harmful
TTHM		11/13/18	Range:				organisms. TTHMs are formed when
		2/19/19	56-99				water contains large amounts of organic
		5/14/19					matter.
		8/20/19					
		*11/19/19					
Haloacetic acids-	no	5/8/18	*Highest Avg.	ug/l	0 ug/l	MCL =	By-product of drinking water
HAA		8/14/18	51.75			60 ug/l	chlorination disinfection needed to kill
		11/13/18	Range:				harmful organisms.
		*2/19/19	32-68				
		5/14/19 8/20/19					
		11/19/19					
*Compliance is based of	on annual runn		The level presented i	is the highest	running ar	nual average of	the data collected.
Stage 2 Disinfectior		<u> </u>		0	0	8	
				TT •4		Regulatory	
Detected	Violation	Date of	Level Detected (Avg/Max)	Unit measure-	MCL	Limit	Turical source of Contaminant
Dettettu					0	ALCI TT	Typical source of Contaminant
Contaminant	Yes/No				G	(MCL,TT	
	Yes/No	Samples	(range)	ment	G	(MCL,11 or AL)	
Contaminant	Yes/No no	Samples 5/8/18	(range) *Highest Avg.		G 0 ug/1	or AL) MCL =	By-product of drinking water
Contaminant Total trihalomethanes-		Samples 5/8/18 8/14/18	(range) *Highest Avg. 66.25	ment	-	or AL)	chlorination needed to kill harmful
Contaminant		Samples 5/8/18	(range) *Highest Avg.	ment	-	or AL) MCL =	

Γ

		5/14/19 *8/13/19 11/11/19					matter.
Haloacetic acids- HAA	no	5/8/18 8/14/18 11/13/18 *2/12/19 5/14/19 8/13/19 11/11/19	*Highest Avg. 41.75 Range: 29-55	ug/l	0 ug/l	MCL = 60 ug/l	By-product of drinking water chlorination disinfection needed to kill harmful organisms.

Definitions: Due to the scientific nature of water quality analysis, these tables may contain unfamiliar terms and abbreviations. The following definitions are provided to help you better understand the tables' content:

<u>Maximum Contaminant Level (MCL)</u>: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as possible.

<u>Maximum Contaminant Level Goal (MCLG)</u>: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water.

There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Action Level (AL)</u>: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system *must* follow.

<u>Nephelometric Turbidity Unit (NTU)</u>: A measure of the clarity of the water. Turbidity in excess of 5 NTU is just noticeable to the average person

<u>Milligrams per Liter (mg/l)</u>: Corresponds to one part of liquid in one million parts of liquid (parts per million -ppm). Micrograms per Liter (ug/l): Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb).

Picocuries per Liter (pCi/L): A measure of the radioactivity in water.

<u>Treatment Technique (TT):</u> A required process intended to reduce the level of a contaminant in drinking water. <u>Haloacetic acids (five) (HAA5):</u> means the sum of the concentrations in milligrams per liter of five specific haloacetic acid compounds.

<u>Total Trihalomethane (TTHM)</u>: means the sum of the concentration of trichloromethane (chloroform), dibromochloromethane, bromodichloromethane and tribromomethane (bromoform)

What Does This Information Mean?

As you can see by the table, the Village of Mt. Morris had no violations. The Town and Village of Leicester water system as well as ARS/Rocksalt and the Town of Mt Morris Water systems all had elevated trihalomethane levels in 2019, but their averages were below the MCL. All purchase water systems are working diligently with the Village of Mount Morris on a flushing program to maintain fresh water in the system.

Water is tested for coliform bacteria four times per month in the Village of Mt. Morris, and once per month in each of the purchase water systems. We have learned through our testing that other contaminants have been detected; however, these contaminants were detected below the level allowed by the State. The contaminants listed in the tables are only the constituents that were above *detectable* levels of the over 100 contaminants that were monitored and tested for.

Is Our Water System Meeting Other Rules That Govern Operations?

During 2019, our systems were in compliance with applicable State drinking water operating, monitoring and reporting.

bo I Need To Take Special Precautions? Some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Information on Lead in Drinking Water

In 2017 lead was not detected in the water leaving the treatment plant. It is possible for water to pick up lead from home plumbing solder or fixtures if it sits in the pipes for a long time but our testing indicates this is not a problem for our customers. However, due to problems some water suppliers have had with drinking water lead levels, the USEPA is requiring all water suppliers to include the following educational text in their annual water quality reports:

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information For Non-English Speaking Residents (Spanish)

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien. This report contains very important information about your drinking water. Translate it or speak with someone who understands it.

Why Save Water and How to Avoid Wasting It?

Although our system has an adequate amount of water to meet present and future demands, there are a number of reasons why it is important to conserve water:

- The need to conserve our natural resources is essential to the survival of human life and preservation of nature's ecosystem.
- Saving water reduces the cost of energy required to acquire and treat water.
- Saving water lessens the strain on the water system during dry spells, helping to avoid restrictions and meet fire fighting needs.

Here are but a few of the suggestions for water users to take an active role. You'll be surprised at how much you can save without hardship right in your own home.

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So it's wise to load it to capacity.
- Turn off the water while shaving and/or brushing your teeth.
- Check faucets for leaks. A repaired slow drip can save almost 6,000 gallons per year.
- Check your toilet for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. Losing around 100 gallons a day is common for these invisible toilet leaks.

6 System Improvements

- The Silver Lake intake structure was inspected and cleaned.
- A new residential water metering system is in use and meter replacements are completed. 149 Meters were installed in 2019.
- The Village of Mt. Morris and their purchase water systems coordinated flushing twice in 2019.
- In 2019 an automatic flusher was installed at the North Main Street hydrant and flushed 3 times per week throughout the summer months to keep water fresh and chlorine residual levels maintained.
- The Village of Mount Morris replaced 2 hydrants.
- The reservoir was inspected and the intake bubblers were cleaned and inspected.
- Pre chlorination was added to the reservoir to discourage zebra mussel growth.
- The clear well was inspected and repairs were made.

Closing

Thank you for supporting your water department(s). We have been very successful in complying with ever increasingly stringent water quality standards. Our history of compliance and even a few taste contest victories are certainly indicative of the aesthetic quality of the water. The Mt. Morris Water Department has an open-door policy and encourages community input.

Feel free to call:

Mt. Morris Water Treatment Plant: (585) 658-2331Village of Mt. Morris: (585) 658-4160Livingston Co. Dept. of Health: (585) 243-7280Village of Leicester: (585) 382-3699Liv. Co. Water/Sewer Authority(ARS/Groveland): (585) 346-3523

Town of Leicester (585) 382-3231 Town of Mt. Morris (585) 658-3375